Beyond crystallography : Diffractive imaging using coherent x - ray light sources

نویسندگان

  • S. Garnerone
  • P. Zanardi
  • D. A. Lidar
  • T. Calarco
  • P. Grangier
  • A. Wallraff
  • P. Zoller
  • B. Sanguinetti
  • A. Martin
  • H. Zbinden
  • N. Gisin
  • P. C. Humphreys
  • M. Barbieri
  • A. Datta
  • I. A. Walmsley
  • D. E. Chang
  • V. Vuletic
  • M. D. Lukin
  • P. J. Bustard
  • J. Nunn
  • R. Lausten
  • B. J. Sussman
  • D.-S. Ding
  • Z. Y. Zhou
  • B. S. Shi
  • G. C. Guo
چکیده

1. M. Ringbauer et al., Nat. Phys. 11, 249–254 (2015). 2. S. Garnerone, P. Zanardi, D. A. Lidar, Phys. Rev. Lett. 108, 230506 (2012). 3. T. Calarco, P. Grangier, A. Wallraff, P. Zoller, Nat. Phys. 4, 2–3 (2008). 4. B. Sanguinetti, A. Martin, H. Zbinden, N. Gisin, Phys. Rev. X 4, 031056 (2014). 5. See, for example, www.idquantique.com/random-numbergenerators/products/quantis-usb.html. 6. H.-K. Lo, M. Curty, K. Tamaki, Nat. Photonics 8, 595–604 (2014). 7. N. Walenta et al., New J. Phys. 16, 013047 (2014). 8. S. Nauerth et al., Nat. Photonics 7, 382–386 (2013). 9. U. Vazirani, T. Vidick, Phys. Rev. Lett. 113, 140501 (2014). 10. I. Ali-Khan, C. J. Broadbent, J. C. Howell, Phys. Rev. Lett. 98, 060503 (2007). 11. T. Zhong et al., New J. Phys. 17, 022002 (2015). 12. H. J. Kimble, Nature 453, 1023–1030 (2008). 13. N. Sangouard, C. Simon, H. de Riedmatten, N. Gisin, Rev. Mod. Phys. 83, 33–80 (2011). 14. V. Giovannetti, S. Lloyd, L. Maccone, Nat. Photonics 5, 222–229 (2011). 15. R. Demkowicz-Dobrzański, L. Maccone, Phys. Rev. Lett. 113, 250801 (2014). 16. R. Chaves, J. B. Brask, M. Markiewicz, J. Kołodyński, A. Acín, Phys. Rev. Lett. 111, 120401 (2013). 17. H. Grote et al., Phys. Rev. Lett. 110, 181101 (2013). 18. M. G. Genoni, S. Olivares, M. G. A. Paris, Phys. Rev. Lett. 106, 153603 (2011). 19. M. D. Vidrighin et al., Nat. Commun. 5, 3532 (2014). 20. P. C. Humphreys, M. Barbieri, A. Datta, I. A. Walmsley, Phys. Rev. Lett. 111, 070403 (2013). 21. Y.-L. Zhang, H. Wang, L. Jing, L. Z. Mu, H. Fan, Sci. Rep. 4, 7390 (2014). 22. M. Lang, C. Caves, Phys. Rev. A 90, 025802 (2014). 23. P. Kok et al., Rev. Mod. Phys. 79, 135–174 (2007). 24. S. Aaronson, A. Arkhipov, in Proceedings of the 43rd Annual ACM Symposium on Theory of Computing (Association for Computing Machinery, New York, 2011), pp. 333–342. 25. J. B. Spring et al., Science 339, 798–801 (2013). 26. M. A. Broome et al., Science 339, 794–798 (2013). 27. M. Tillman et al., Nat. Photonics 7, 540–544 (2013). 28. A. Crespi et al., Nat. Photonics 7, 545–549 (2013). 29. C. L. Salter et al., Nature 465, 594–597 (2010). 30. J. B. Spring et al., Opt. Express 21, 13522–13532 (2013). 31. M. Förtsch et al., Nat. Commun. 4, 1818 (2013). 32. F. Boitier et al., Phys. Rev. Lett. 112, 183901 (2014). 33. D. E. Chang, V. Vuletic, M. D. Lukin, Nat. Photonics 8, 685–694 (2014). 34. J. Nunn et al., Phys. Rev. Lett. 110, 133601 (2013). 35. H. P. Specht et al., Nature 473, 190–193 (2011). 36. Y. O. Dudin, L. Li, A. Kuzmich, Phys. Rev. A 87, 031801(R) (2013). 37. D. G. England, P. J. Bustard, J. Nunn, R. Lausten, B. J. Sussman, Phys. Rev. Lett. 111, 243601 (2013). 38. D.-S. Ding, Z. Y. Zhou, B. S. Shi, G. C. Guo, Nat. Commun. 4, 2527 (2013). 39. W. J. Munro, K. Azuma, K. Tamaki, K. Nemoto, IEEE J. Select. Top. Quant. Elec. 21, 6400813 (2015). 40. W. Pfaff et al., Science 345, 532–535 (2014). 41. A. E. Lita, A. J. Miller, S. W. Nam, Opt. Express 16, 3032–3040 (2008). 42. J. J. Renema et al., Phys. Rev. Lett. 112, 117604 (2014). 43. F. Marsili et al., Nat. Photonics 7, 210–214 (2013). 44. A. Reiserer, S. Ritter, G. Rempe, Science 342, 1349–1351 (2013).

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Beyond crystallography: diffractive imaging using coherent x-ray light sources.

X-ray crystallography has been central to the development of many fields of science over the past century. It has now matured to a point that as long as good-quality crystals are available, their atomic structure can be routinely determined in three dimensions. However, many samples in physics, chemistry, materials science, nanoscience, geology, and biology are noncrystalline, and thus their th...

متن کامل

Lensless imaging using broadband X-ray sources

High-resolution X-ray imaging techniques using optical elements such as zone plates are widely used for viewing the internal structure of samples in exquisite detail. The resolution attainable is ultimately limited by the manufacturing tolerances for the optics. Combining ideas from crystallography and holography, this limit may be surpassed by the method of coherent diffractive imaging (CDI)1....

متن کامل

The fluence–resolution relationship in holographic and coherent diffractive imaging1

This work presents a numerical study of the fluence-resolution behaviour for two coherent lensless X-ray imaging techniques. To this end the fluence-resolution relationship of inline near-field holography and far-field coherent diffractive imaging are compared in numerical experiments. To achieve this, the phase reconstruction is carried out using iterative phase-retrieval algorithms on simulat...

متن کامل

Frontier methods in coherent X-ray diffraction for high-resolution structure determination

In 1912, Max von Laue and collaborators first observed diffraction spots from a millimeter-sized crystal of copper sulfate using an Xray tube. Crystallography was born of this experiment, and since then, diffraction by both X-rays and electrons has revealed a myriad of inorganic and organic structures, including structures of complex protein assemblies. Advancements in X-ray sources have spurre...

متن کامل

Closing the Gap to the Diffraction Limit: Near Wavelength Limited Tabletop Soft X-Ray Coherent Diffractive Imaging

Date The final copy of this thesis has been examined by the signatories, and we find that both the content and the form meet acceptable presentation standards of scholarly work in the above mentioned discipline. Light microscopy has greatly advanced our understanding of nature. The achievable resolution, however, is limited by optical wavelengths to around 200 nm. Using novel imaging and labeli...

متن کامل

Fourier-Transform Ghost Imaging with Hard X Rays.

Knowledge gained through x-ray crystallography fostered structural determination of materials and greatly facilitated the development of modern science and technology in the past century. However, it is only applied to crystalline structures and cannot resolve noncrystalline materials. Here we demonstrate a novel lensless Fourier-transform ghost imaging method with pseudothermal hard x rays tha...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2015